Sifat Optik Kaca Tellurite yang Terdadah PbO

Evi Nurliana, Kusnanto Mukti W dan Ahmad Marzuki

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Jl. Ir. Sutami No.36 A. Kentingan Surakarta Email: evinurliana23@gmail.com

Diterima (), direvisi ()

Abstract. This research is aimed to know the influence of doping PbO to optical properties of tellurite glass. Glass composition used 55TeO_2 -(43-x)ZnO- $2\text{Bi}_2\text{O}_3$ -xPbO with variation of x=0,6,7,8,9,10. The glasses were fabricated by melt-quenching method. The characterizations carried out in this experiment are density, refractive index, and absorbtion of glass. The density is measured using pycnometer, refractive index using Brewster angle method atwavelength 640 nm. Spectrum absorbtion measured using UV-VIS spectrophotometer at wavelength 200-800 nm and FTIR spectrophotometer at wavelength 2500-6500 nm. The result of this research are known that the addition of PbO at glass composition result in increasing the refractive index, density, and also increasing optical band gap energy of tellurite glass.

Keywords. Tellurite, refractive index, density, UV-Vis& FTIR spectroscopy

Abstrak. Penelitian ini bertujuan untuk mengetahui pengaruh dadah PbO terhadap sifat optis kaca *tellurite*. Komposisi kaca yang digunakan yaitu 55TeO₂-(43-x)ZnO-2Bi₂O₃-xPbO dengan variasi x = 0, 6, 7, 8, 9, 10.Fabrikasi kaca *tellurite*telah dilakukan dengan metode *melt-quenching*. Karakterisasi yang dilakukan yaitu pengukuran densitas, indeks bias, dan absorbsi kaca. Pengukuran densitas dilakukan dengan piknometer, indeks bias dengan metode sudut *Brewster* pada panjang gelombang 640 nm. Pengukuran spektrum absorbsi dilakukan menggunakan UV-Vis spektrofotometer pada panjang gelombang 200-800 nm dan FTIR spektrofotometer pada panjang gelombang 2500-6500 nm. Dari hasil penelitian diketahui bahwa penambahan PbO pada komposisi kaca mengakibatkan kenaikan indeks bias, densitas, serta kenaikan energi band gap optis pada kaca *tellurite*.

Kata kunci. Tellurite, indeks bias, densitas, spektroskopi UV-Vis &FTIR

PENDAHULUAN

Tellurium Oxide (TeO₂) adalah oksida paling stabil dari tellurium (Te), yang memiliki titik leleh 733°C. Dari sudut pandang kimia dasar, posisi transisi dari Te diantara logam dan nonlogam memiliki peranan yang penting. Stabilitas dari tellurium oxide adalah salah satu sifat yang mula-mula menarik perhatian para peneliti,

baik pada kristal maupun pada kaca tellurite (El-Mallawany, 2002).Kaca HMO (*Heavy Metal Oxide*) yang mengandung TeO₂, PbO, Ga₂O₃ dan Bi₂O₃ diketahui memiliki transparansi yang bagus pada daerah cahaya tampak dan *near inframerah* serta memiliki indek bias tinggi (Massera*et. al*, 2010).

Tellurite merupakan kaca yang memiliki karakterisasi indek bias yang tinggi yaitu lebih dari 1,85, bersifat stabil, range

transmisi yang lebar(0,4-6,0) µm(Reben, et.al., 2010). Kaca tellurite memiliki banyak kelebihan dibanding bahan kaca yang lain, seperti yang diketahui silica memiliki range transmitansi pendek, germanium memiliki panjang gelombang panjang, dan *fluoride* bersifat tidak stabil dengan indeks bias rendah antara 1,45 sampai dengan 1,55 dan spektrum infra merah pada μm (Poulain, 1992).Panambahan oksida lain yang memiliki ion polarizability tinggi dalam komposisi kaca, seperti PbO (3,45); BaO (3,652); CdO (2,909) diketahui dapat meningkatkan indek bias kaca (Dimitrov et.al., 2010).

Pemanfaatan kaca tellurite dalam industri seperti elektrik, optik, elektronik dan dalam industri lainnya sangat besar sekali karena sifat semi konduktornya yang bagus (Raju et.al., 2013). Salah satu pemanfaatan kaca tellurite yaitu digunakan sebagai fiber sensor. Fiber optik sensor biasanya didasarkan pada pelemahan intensitas cahaya yang melaluinya. Pelemahan intensitas cahaya dapat terjadi perlakuan bending, mekanik, maupun faktor lain seperti adanya medan evanescent. Intensitas medan evanescent meluruh secara eksponensial terhadap jarak tegak lurus (z) bidang batas menurut persamaan (1),

$$I_Z = I_0 exp\left(-\frac{z}{d_n}\right) \tag{1}$$

dengan I_o adalah intensitas radiasi datang. Kedalaman penetrasi (d_p) medan evanescent berhubungan dengan sudut datang (θ) pada bidang batas, indeks bias $core(n_1)$, indeks bias cladding (n_2) dan panjang gelombang radiasi (λ) , menurut persamaan (2) yaitu,

$$d_p = \frac{\lambda}{(2\pi)\sqrt{n_1^2 \sin^2\theta - n_2^2}}$$
 (2)

Penetration depth (d_p) adalah kedalaman gelombang memasuki *cladding* dan n adalah rasio indeks *cladding* terhadap *core*, dimana $n = (n_{cladd}/n_{core})$. Melihat persamaan

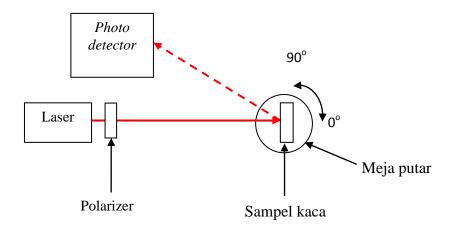
(2) diatas, maka agar diperoleh (d_p) yang besar dibutuhkan (n) yang besar pula (Cao and Duan, 2005).

Paper ini melaporkan kajian pengaruh penambahan PbO padakomposisi kaca *tellurite* terhadap sifat optis kaca TZBPb melalui pengukuran indeks bias, densitas, spektrum absorpsi, transmitansi, dan energi gap optis .

METODE PENELITIAN

Penelitian ini menggunakan komposisi (% mol) 55TeO_2 -(43-x)ZnO-2Bi₂O₃-xPbO dengan variasi x = 0, 6, 7, 8, 9, 10. Fabrikasi kaca tellurite dilakukan dengan metode *melt-quenching*.Semua bahan dileburkan dalam crucible platina pada suhu 900°C didalam furnace selama 30 menit. Kemudian leburan kaca dituang kedalam preheating mould yang bersuhu 250°C. Kaca selanjutnya dianil selama 6 jam pada suhu 265°C. Sebelum dilakukan karakterisasi kaca dipotong dan dihaluskan terlebih dahulu. (polish) Kaca dihasilkan memiliki ketebalan ± 2 mm.

Pengukuran densitas dilakukan dengan prinsip hukum *Archimedes* dengan menggunkan piknometer. Prinsipnya yaitu membandingkan antara massa piknometer dalam keadaan kosong dengan massa piknometer yang ditambah air, dan ditambah sampel kaca, sehingga volum kaca dapat diketahui. Dari ketiga keadaan tersebut, maka densitas dari sampel kaca dapat dihitung dengan persamaan berikut:


$$\rho_{glass} = \frac{m_{glass}}{V_{glass}}$$

dengan

$$V_{glass} = \frac{(m_3 - m_0) - (m_2 - m_1)}{\rho_{H_2o}}$$
 (3)

dimana:

 m_0 = massa piknometer kosong m_1 = massa piknometer + sampel kaca

Gambar 1. Skema Set Alat Pengukuran Indek Bias Metode Sudut Brewster.

 m_2 = massa piknometer + sampel kaca + aquades

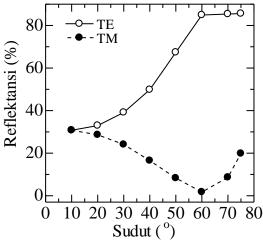
 m_3 = massa piknometer + aquades

 V_{glass} = volum Kaca

Pengukuran indeks bias dilakukan dengan metode *Brewster angle*berdasarkan persamaan Fresnel yaitu dengan menetukan besarnya koefisien refleksi (*r*)seperti diberikan oleh Persamaan (4) dan (5)

TE:
$$r = \frac{E_r}{E} = \frac{\cos\theta - \sqrt{n^2 - \sin^2\theta}}{\cos\theta + \sqrt{n^2 - \sin^2\theta}}$$
 (4)

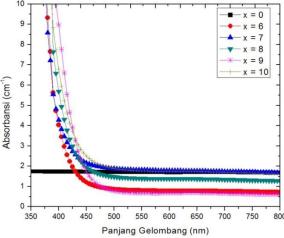
TM:
$$r = \frac{E_r}{E} = \frac{n^2 \cos\theta - \sqrt{n^2 - \sin^2\theta}}{n^2 \cos\theta + \sqrt{n^2 - \sin^2\theta}}$$
 (5)


dimana θ = besar sudut datang, dan n = indeks bias sampel. Indeks bias sampel menurut metode ini ditentukan oleh θ yang membuat r = 0(Pedrotti, 1993). Skema pengukuran indeks bias kaca disajikan oleh gambar 1.

Spektrum absorpsi dan transmitansi dari kaca *tellurite* diukur menggunakan Spektrofotometer UV-Vis Perkin Elmer Lambda 25 pada daerah panjang gelombang (200-800) nm dan spektrofotometer FTIR Shimadzu IR Prectice 21 pada panjang gelombang (2500-6500) nm. Blanko yang

digunakan dalam pengukuran spektrum transmitansi dan absorbsi adalah udara.

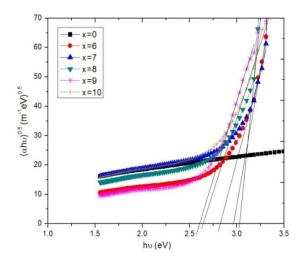
HASIL DAN PEMBAHASAN


Pengukuran indeks bias metode sudut Brewster didasarkan pada nilai reflektansi. Nilai reflektansi dapat diukur dengan mode TE dan TM seperti pada Gambar 2. Pengukuran indek bias dilakukan dengan mode TM pada sampel kaca. Hasil pengukuran indeks bias dapat dilihat pada Tabel 1. Penambahan unsur PbO yang komposisi semakin banyak pada mengakibatkan kenaikan indeks bias. Dari komposisi awalnya yang tidak mengandung unsur PbO diketahui nilai indeks bias kaca sebesar 1,84 dan menjadi 2,08 ketika terjadi penambahan PbO sebesar 10mol%. Selain itu, penambahan PbO yang semakin banyak juga mengakibatkan kenaikan nilai densitas baik secara perhitungan maupun pengukuran. Hasil ini bersesuaian dengan eksperimen Kaur et.al (2010) dimana diketahui bahwa tiap penambahan PbO pada komposisi menghasilkan kenaikan nilai densitas kaca. Hal ini karena PbO diketahui memiliki nilai ion polarizability yang tinggi yaitu sebesar 3,45.

Gambar 2. Pengukuran Indek Bias Mode TE dan TM

Tabel 1. Pengukuran indeks bias

Tabel 1. Feligukuran indeks bias					
X	$\rho (gr/cm^3)$		Vm	Indeks Bias	
	Pengukuran	perhitungan	 [
0	$(6,10 \pm 0,02)$	5,80	21,66	1,84	
6	$(6,16 \pm 0,01)$	6,03	22,83	2,01	
7	$(6,24 \pm 0,02)$	6,07	22,76	2,03	
8	$(6,36 \pm 0,02)$	6,11	22,55	2,05	
9	$(6,59 \pm 0,02)$	6,15	21,98	2,07	
10	$(6,61 \pm 0,03)$	6,18	22,13	2,08	



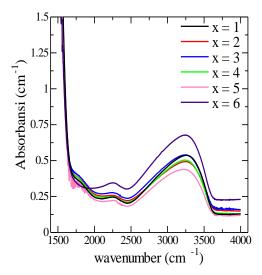
Gambar 3. Spektrum Absorbansi Kaca *Tellurite*

Melalui gambar 3 terlihat nilai absorbansisampel kaca pada rentang daerah UV-Vis. Pada daerah UV nilai absorbansi sangat tinggi. Apabila transisi elektronik bersesuaian dengan besarnya energi fonon maka dapat menyebabkan penyerapan yang

besar seiring dengan besarnnya energi dari foton. ketika spektrum penyerapan mengalami penurunan dari UV menuju cahaya tampak (Vis), terlihat bahwa panjang gelombang semakin besar. Hal ini berbanding terbalik dengan energinya yang semakin mengecil.memasuki daerah cahaya tampak nilai absorbsi menjadi rendah. Hal ini karena pada daerah UV sampai dengan cahaya tampak (VIS), foton (cahaya) memiliki energi yang cukup untuk terjadi transisi.

Data absorpsi kaca kemudian dapat digunakan untuk menentukan nilai energi band gap kaca *tellurite*. Energi band gap kaca dapat ditentukan dari ekstrapolasi dari plot bagian linear $(\alpha h v)^{0.5}$ atau $(\alpha h v)^2$ terhadap plot hv sampai nilai $(\alpha hv)^{0.5}$ atau $(\alpha hv)^2$ pada axis (sumbu x) = 0, seperti terlihat pada gambar 4 (Erairah, 2010).

Gambar 4. Energi Gap dengan Metode Tauc's Plot

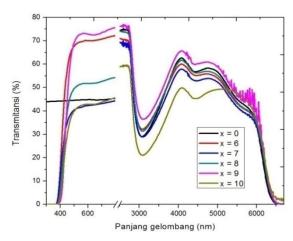

Penambahan PbO pada komposisi, secara tren menunjukkan kenaikan energi *band gap* optis kaca. Meskipun pada x = 9 energi *band gap* optis tiap sampel kaca disajikan oleh Tabel 2.

Hasil spektra FTIR(Gambar 3) menunjukkan pita serapan pada daerah inframerah kaitannya dengan *hydroxide* (OH) grup dalam kaca. Ikatan OH yang terlihat, posisinya bergantung pada sudut ikatan hidrogen dari OH pada kaca yaitu hidrogen terikat OH dengan kuat (OH kuat), hidrogen terikat OH dengan lemah (OH lemah) dan OH bebas.

Gambar 5 menunjukkan spektrum absorbansi pada daerah inframerah untuk semua sampel. Dari semua sampel terlihat

Tabel 2. Nilai Energi Gap Tauc's Plot

Komposisi	E.gap (eV) Tauc's plot
$\mathbf{x} = 6$	2,92
$\mathbf{x} = 7$	2,97
$\mathbf{x} = 8$	3,02
$\mathbf{x} = 9$	2,60
x =10	2,86



Gambar 5. Spektrum FTIR Kaca Tellurite

pada daerah *wavenumber* sekitar 3400 cm⁻¹ terdapat pucak serapan utama. Serapan pada daerah ini diidentifikasi sebagai kombinasi H⁻terikat OH secara lemah dan OH bebas. Intensitas pita yang lebih rendah pada sekitar 2250 cm⁻¹ berkaitan dengan H terikat OH secara kuat. Pita *noise* (*noisy band*) terlihat disekitar 3700 cm⁻¹ dikenal sebagai *envelope of the rotational bands of atmospheric water*. Sedangkan *multiphonon edge* pada kaca muncul sekitar 1673 cm⁻¹ (6 µm). Hal yang sama juga terjadi pada penelitian O'Donnel (2004).

Pada spektrum FTIR untuk semua sampel juga terlihat di daerah panjang gelombang >6000 nm atau wavenumber sekitar 1500 cm⁻¹ serapan yang meningkat lagi. Serapan yang besar pada daerah inframerah diakibatkan karena frekuensi getaran atom pada kaca bersesuaian dengan paanjang gelombang cahaya yang melaluinya, sehingga banyak cahaya yang diserap.

Melalui hasil pengujian spektrum absorbansi atau transmisi pada daerah UV-Vis dan di daerah infaramerah pada semua sampel kaca, dapat ditentukan juga rentang

Gambar 6. Range Transmisi Kaca Tellurite

trasmisinya. Gambar 6 memperlihatkan rentang transmisi kaca tellurite pada semua sampel kaca yaitu sekitar 380-6500 nm. Kaca *tellurite* diketahui memiliki rentang transmisi yang bagus.

KESIMPULAN

Fabrikasi kaca tellurite dengan metode melt-quenching telah berhasil dilakukan. Kaca tellurite yang telah difabrikasi kemudian dikarakterisasi meliputdensitas, bias menggunakan indeks metode sudut*Brewster* dan absorbansi spektrofotometer UV-Vis menggunakan dan FTIR. Penambahan unsur PbO (yang diketahui memiliki nilai ion polarizabity tinggi) pada komposisi mengakibatkan kenaikan densitas, indeks bias, serta kenaikan energi band gap optis.

DAFTAR PUSTAKA

Cao, W., and Duan, Y., (2005). Optical Fiber-Based Evanescent Amonia Sensor. *Sensor and Actuator*, B 110, 252-259.

Dimitrov, V., Komatsu, T. (2010). An Interpretation of Optical Properties of Oxides and Oxide Glasses in Terms of the Electronic Ion Polarizability and Average Single Bond Strength (Review). Journal of the University of Chemical Technology and Metallurgy, Vol. 45, No. 3, pp. 219-250.

El-Mallawany, R.A.H. (2002). Tellurite Glass Handbook: Physical Properties and Data. Florida. CRC Press.

Erairah, B. (2010). Optical Properties of Lead-Tellurite Glasses Doped with Samarium Trioxide. Bull. Material Science. Vol. 33, No. 4, pp. 391-394.

Kaur, A., Khanna, A., Pesquera, C., Gonzáles, F., and Sathe, V. (2010). Preparation and Characterization of Lead and Zinc Tellurite Glasses. Journal of Non-Crystalline Solids, Vol. 356, pp. 864-872.

Massera, J., Haldeman, A., Milanese, D., Gebavi, H., Ferraris, M., Foy,P., Hawkins, W., Ballato, J., Stolen, R., Petit, L., and Rhicardson, K. (2010). Processing and Characterization of Core-Clad Tellurite Glass Performs and Fibers Fabricated By Rotational Casting. Optical Materials, 32, 582-588.

Poulain, M., A. Soufiane. (1992). Fluride Glasses: Synthesis and Properties. Brazilian Journal of Physics, vol. 22, no. 3, September, 1992.

O'Donnel, Mattew. (2004). Thesis: Tellurite and Fluorotellurite Glasses for Active and Passive Fibreoptic Waveguides. University of Nottingham.

Pedrotti, F.L. and Pedrotti, L.S. (1993). Introduction to Optics: 2nd Edition. New Jersey: Pretice-Hall, Inc.

Raju, K.V., Raju, C.N., Sailaja, S., and Reddy, B.S. (2013). Judd-Ofelt Analysis and Photoluminescene Properties of RE3+ (RE= Er & Nd): Cadmium Lithium Boro Tellurite Glass. Solid State Science, Vol. 15, pp. 102-109.

Reben, M., J. Wasylak, J. Jaglarz. (2010). Influence of active admixtures onto

tellurite glass refractive index. Bulletin of the Polish Academy of Sciences. Technical Sciences, Vol. 58, No. 4.