Analisis Pengaruh Ketinggian Tanah dan Kedalaman Sumur terhadap Suhu dan pH Air Sumur di Kabupaten Blitar

Muhammad Syafa Tirtana Sanjaya^{(1,a)*} dan Tamara Pingki^(2,b)

⁽¹⁾Departemen Statistika Bisnis/Fakultas Vokasi, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 60111

⁽²⁾Pendidikan Fisika/Fakultas Keguruan dan Ilmu Pendidikan, Universitas Jember, Jember, Indonesia, 68121

Email: (a*)sanjayasyafa@gmail.com, (b)tamarapingki9981@gmail.com

Diterima (28 April 2022), Direvisi (30 Juni 2022)

Abstract. The fulfillment of human daily needs cannot be separated from water. The water most used by the community is ground water. One of the factors that can affect water quality is the depth of the water source. The purpose of this study was to analyze the effect of soil height and well depth on the temperature and pH of well water in Blitar Regency. The data was taken from 4 sub-districts in Blitar Regency, namely Ponggok, Nglegok Kesamben, and Selorejo. The characteristics of the pH of the water have an average of 6.7 and a water temperature of 23.43°C. If the depth of the well is increased by 1 meter, the pH of the water will increase by 0.1177 units. If the depth of the well is increased by 1 meter, the water temperature will increase by 0.126°C. Based on the results of the simultaneous test, it is known that the depth of the well and the height of the soil have a significant effect on water pH and water temperature. Based on the results of the partial test, it is known that the depth of the well has no significant effect on water pH and water temperature. However, the height of the soil has a significant effect on water pH and water temperature. Based on the results of the model goodness test, it can be seen that the proportion of water pH variability can be explained by the variable depth of the well and the height of the soil by 36.03% and the remaining 63.97% is influenced by other variables outside the model and the proportion of water temperature variability can be explained by the variable depth of the well and the ground height is 92.58% and the remaining 7.42% is influenced by other variables outside the model.

Keywords: Depth, Altitude, pH, Temperature.

Abstrak. Pemenuhan kebutuhan sehari-hari manusia tidak dapat terlepas dari air. Air yang paling banyak dimanfaatkan masyarakat adalah air tanah. Faktor yang dapat mempengaruhi kualitas air salah satunya adalah kedalaman sumber air. Tujuan dari penelitian ini adalah menganalisis pengaruh ketinggian tanah dan kedalaman sumur terhadap suhu dan pH air sumur di Kabupaten Blitar. Data yang diambil berasal dari 4 kecamatan di Kabupaten Blitar, yaitu Ponggok, Nglegok Kesamben, dan Selorejo. Karaktersitik pH air memiliki rata-rata sebesar 6,7 dan suhu air sebesar 23,43°C. Jika kedalaman sumur bertambah 1 meter maka pH air akan bertambah sebesar 0,1177 satuan. Jika kedalaman sumur bertambah 1 meter maka suhu air akan bertambah sebesar 0,126°C. Berdasarkan hasil uji serentak diketahui bahwa kedalaman sumur dan ketinggian tanah berpengaruh signifikan terhadap pH air dan suhu air. Berdasarkan hasil uji parsial diketahui bahwa kedalaman sumur tidak berpengaruh signifikan terhadap pH air dan suhu air. Namun ketinggian tanah berpengaruh signifikan terhadap pH air dan suhu air. Berdasarkan hasil uji kebaikan model dapat diketahui bahwa proporsi variabelitas pH air dapat dijelaskan oleh variabel kedalaman sumur dan ketinggian tanah sebesar 36,03% dan sisanya sebesar 63,97% dipengaruhi variabel lain diluar model serta proporsi variabelitas suhu air dapat dijelaskan oleh variabel kedalaman sumur dan ketinggian tanah sebesar 7,42% dipengaruhi variabel lain diluar model.

Kata kunci: Kedalaman, Ketinggian, pH, Suhu.

PENDAHULUAN

Pemenuhan kebutuhan sehari-hari manusia tidak dapat terlepas dari air, diantaranya untuk memenuhi kebutuhan rumah tangga, mandi, minum, industri, pertanian, transportasi, serta pariwisata [1]. Upaya untuk memenuhi kebutuhan air, masyarakat biasanya memanfaatkan air di lapisan bawah tanah, air di permukaan tanah, langsung air yang dari hujan. Berdasarkan ketiga sumber air tersebut, air paling banyak dimanfaatkan vang masyarakat adalah air di lapisan bawah tanah atau biasa disebut air tanah. Air tanah adalah sumber air yang baik digunakan untuk kebutuhan sehari-hari [2]. Hal tersebut dikarenakan air tanah memiliki banyak kelebihan daripada sumber air yang lain, salah satunya adalah kualitas airnya yang lebih baik dan efek yang ditimbulkan dari pencemaran relatif lebih kecil [3]. Namun ketika air tanah sudah tercemar, kualitasnya tidak dapat diperbaiki dengan mencegah pencemar dari sumbernya [4].

Air untuk pemenuhan kebutuhan seharihari haruslah air yang bersih. Air bersih juga harus memenuhi syarat kesehatan, yaitu bebas dari segala macam jenis pencemaran dan sesuai standar kualitas air yang telah ditetapkan [5]. Kualitas air bersih sesuai dengan parameter fisika menurut Peraturan Menteri Kesehatan RΙ No. 416/MENKES/PER/IX/1990, salah satunya adalah tidak berbau, tidak berasa, dan memiliki suhu diantara 10°C hingga 20°C. Kualitas air bersih juga dapat dilihat dari parameter kimia, yaitu derajat keasaman (pH). Air murni yang bersifat netral memiliki suhu 25°C dan pH air sebesar 7,0.

Air dengan pH kurang dari 7,0 tergolong pH asam dan air dengan pH lebih dari 7,0 tergolong pH basa atau alkali [6]. pH yang tergolong rendah dapat menyebabkan rasa masam pada air, sedangkan pH yang tergolong tinggi dapat menyebabkan rasa yang pahit pada air [7].

Pada pH yang sangat tinggi atau pH basa, logam cenderung mengendap, sementara bahan kimia seperti amonia menjadi racun bagi kehidupan air dan air cenderung memiliki bau serta rasa yang tidak enak. pH air <6,5 atau pH asam menyebabkan kelarutan logam cenderung tinggi. Air asam juga dapat menimbulkan korosi pada pipa logam [8]. Standar pH air yang baik berkisar antara 6,5 sampai 9,0. Kisaran pH air minum normal yang disebutkan dalam pedoman WHO adalah antara 6,5 dan 8,5 [9].

Faktor yang dapat mempengaruhi kualitas air salah satunya adalah kedalaman sumber air tersebut berasal. Sumur gali yang cenderung dangkal biasanya memiliki pH lebih asam karena dipengaruhi oleh resapan air permukaan [10]. Sumur gali termasuk jenis sumur yang paling sering digunakan oleh masyarakat dengan kedalaman 7-10 mdpl. Pada sumur gali, tersedia air dari lapisan tanah yang cukup dekat dengan permukaan tanah [11].

Berdasarkan penjelasan di atas, belum banyak penelitian yang menganalisis kualitas air sumur berdasarkan ketinggian tanah dan kedalaman sumur itu berada. Pemahaman tentang kualitas air sumur berdasarkan ketinggian tanah dan kedalaman sumur perlu diteliti lebih lanjut mengingat bahwa masing-masing daerah memiliki kualitas air sumur yang berbeda, baik ditinjau dari ketinggian tanah di mana sumur itu dibuat ataupun kedalaman sumur tersebut dari tanah. Kualitas air yang diteliti kali ini ada dua, yaitu suhu dan pH. Sehingga tujuan dari penelitian ini adalah menganalisis pengaruh ketinggian tanah dan kedalaman sumur terhadap suhu dan pH air sumur di Kabupaten Blitar.

METODE PENELITIAN

Sumber Data

Data yang digunakan dalam penelitian ini merupakan data primer. Sumber data diperoleh dari penelitian tentang kualitas air sumur yang ada di beberapa desa di Kabupaten Blitar Jawa Timur. Data ini diambil pada hari Senin tanggal 28 Maret hingga hari Jumat tanggal 22 April 2022.

Variabel Penelitian

Variabel penelitian yang digunakan dalam penelitian ini adalah sebagai berikut.

Variabel	Keterangan	Skala	Kategori
Y_1	pH Air	Rasio	-
Y_2	Suhu Air	Rasio	-
X_1	Kedalaman Sumur	Rasio	-
X_2	Ketinggian Tanah	Nominal	$0 = \pm 328$ mdpl $1 = \pm 331$ mdpl $2 = \pm 339$ mdpl $3 = \pm 344$ mdpl $4 = \pm 353$ mdpl $5 = \pm 356$ mdpl $6 = \pm 364$ mdpl $7 = \pm 378$ mdpl

Tabel 1. Variabel Penelitian

Langkah Penelitian

Langkah-langkah penelitian yang dilakukan pada penelitian ini adalah sebagai berikut.

- 1. Mengumpulkan data terkait kualitas air sumur beberapa desa di Kabupaten Blitar.
- 2. Mendeskripsikan karakteristik variabel respon yaitu pH air dan suhu air.
- 3. Melakukan analisis korelasi antara variabel prediktor yaitu kedalaman sumur dan ketinggian tanah terhadap variabel respon yaitu pH air serta antara variabel prediktor yaitu kedalaman sumur dan ketinggian tanah terhadap variabel respon yaitu suhu air.
- 4. Melakukan analisis estimasi parameter model regresi antara variabel prediktor terhadap variabel respon.
- 5. Melakukan analisis signifikansi parameter pada model dengan variabel respon pH air dan suhu air.
- 6. Melakukan analisis kebaikan model dengan variabel respon pH air dan suhu air.
- 7. Melakukan analisis multikolinearitas pada model dengan variabel respon pH air dan suhu air.
- 8. Melakukan pemeriksaan asumsi IIDN.
- 9. Menginterpretasikan hasil analisis data.
- 10. Menarik kesimpulan dan saran.

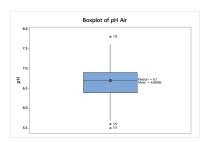
HASIL DAN PEMBAHASAN

Karakteristik Data

Karakteristik data pH air dan suhu air akan dijelaskan dengan menggunakan *boxplot* sebagai berikut.

1. Karakteristik pH Air

Karakteristik data pH air dan suhu air akan dijelaskan dengan menggunakan tabel dan divisualisasikan menggunakan *boxplot* sebagai berikut


2. Karakteristik pH Air

Karakteristik pH air berdasarkan olahan data akan disajikan pada Tabel 2.

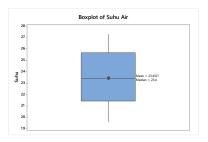
Tabel 2. Karakteristik pH Air

Varia	Tot	Mea	Minim	Medi	Maxim
bel	al	n	um	an	um
pH Air	56	6,69	5,5	6,7	

Berdasarkan Tabel 2 diketahui bahwa total data pH Air sebanyak 56 data dengan rata-rata sebesar 6,693 serta memiliki nilai minimum sebesar 5,5 dan nilai maksimum sebesar 7,8. Visualisasi data menggunakan *boxplot* dijelaskan sebagai berikut.

Gambar 1. Boxplot pH Air

Gambar 1 menunjukan bahwa pH air memiliki rata-rata sebesar 6,693. Gambar 1 juga menunjukan bahwa data tidak simetris karena garis median tidak berada tepat di tengah, serta terdapat data *outlier*.


3. Karakteristik Suhu Air

Karakteristik pH air berdasarkan olahan data akan disajikan pada Tabel 3.

Tabel 3. Karakteristik pH Air

Variab	Tot	Me	Minim	Medi	Maxim
el	al	an	um	an	um
Suhu Air	56	23,4	19,6	23,4	

Berdasarkan Tabel 3 diketahui bahwa total data suhu Air sebanyak 56 data dengan rata-rata sebesar 23,43°C serta memiliki nilai minimum sebesar 19,6°C dan nilai maksimum sebesar 27,3°C. Visualisasi data menggunakan *boxplot* dijelaskan sebagai berikut.

Gambar 2. Boxplot suhu Air

Gambar 2 menunjukan bahwa suhu air memiliki rata-rata sebesar 23,43°C. Gambar 2 juga menunjukan bahwa data tidak simetris karena garis median tidak berada tepat di tengah, serta tidak terdapat data *outlier*.

Uji Korelasi

Uji korelasi digunakan untuk mengetahui apakah terdapat hubungan antara variabel prediktor dan variabel respon. Uji korelasi juga bisa disebut dengan uji asumsi linearitas karena asumsi linearitas dapat diuji menggunakan analisis korelasi atau menggunakan scaterplot. Uji korelasi antara pH air dan Suhu air dengan masing-masing variabel prediktornya dijelaskan sebagai berikut.

1. Uji Korelasi antara pH Air dengan Masing-masing Variabel Prediktor

Uji korelasi untuk mengetahui hubungan antara pH air dengan masing-masing variabel prediktornya dijelaskan sebagai berikut.

Hipotesis

 H_0 : $\rho = 0$ (Tidak terdapat hubungan antara pH air dengan masing-masing variabel prediktornya)

H₁: $\rho \neq 0$ (Terdapat hubungan antara pH air dengan masing-masing variabel prediktornya)

Taraf Signifikan: $\alpha = 0.05$

Daerah Penolakan: Tolak H_0 jika nilai R_{hitung} > R_{tabel} atau - R_{hitung} < - R_{tabel} dan P-Value < α = 0.05

Statistik uji akan ditampilakan pada Tabel 4.

Tabel 4. Uji Koelasi pH Air dengan Masing-masing Variabel Prediktor

Variabel	R _{hitung}	R _{Tabel}	P-Value
Kedalaman Sumur	-0,375	-0,263	0,004
Ketinggian Tanah	0,569	0,263	0,000

Berdasarkan Tabel 4 hasil statistik uji dapat diketahui bahwa nilai $R_{\rm hitung} > R_{\rm tabel}$ atau - $R_{\rm hitung} < -R_{\rm tabel}$ diperkuat dengan nilai P-Value yang merupakan nilai kesalahan yang didapat peneliti dari hasil perhitungan statistik dari masing-masing variabel prediktor bernilai kurang dari α sebesar 0,05 maka dapat diambil keputusan tolak H_0 sehingga disimpulkan bahwa terdapat hubungan antara pH air dengan masingmasing variabel prediktornya. Berdasarkan Tabel 4 juga dapat disimpilkan bahwa data telah memenuhi asumsi linearitas.

Uji Korelasi antara Suhu Air dan Kedalaman Sumur

Uji korelasi untuk mengetahui hubungan antara suhu air dengan masing-masing variabel prediktornya dijelaskan sebagai berikut.

Hipotesis

 H_0 : $\rho = 0$ (Tidak terdapat hubungan antara suhu air dengan masing-masing variabel prediktornya)

H₁: $\rho \neq 0$ (Terdapat hubungan antara suhu air dengan masing-masing variabel prediktornya)

Taraf Signifikan: $\alpha = 0.05$

Daerah Penolakan: Tolak H_0 jika nilai R_{hitung} > R_{tabel} atau - R_{hitung} < - R_{tabel} dan P-Value < α = 0.05

Statistik uji akan ditampilakan pada Tabel 5.

Tabel 5. Uji Koelasi Suhu Air dengan Masingmasing Variabel Prediktor

Variabel	R _{hitung}	R_{Tabel}	P-Value
Kedalaman Sumur	0,832	0,263	0,000

Ketinggian Tanah	-0,961	-0,263	0,000

Berdasarkan hasil statistik uji dapat diketahui bahwa nilai $R_{\text{hitung}} > R_{\text{tabel}}$ atau -Rhitung < -Rtabel diperkuat dengan nilai P-Value yang merupakan nilai kesalahan yang didapat peneliti dari hasil perhitungan masing-masing statistik dari variabel prediktor bernilai kurang dari α sebesar 0,05 maka dapat diambil keputusan tolak H₀, sehingga disimpulkan bahwa terdapat hubungan antara suhu air dengan masingmasing variabel prediktornya. Berdasarkan Tabel 5 juga dapat disimpilkan bahwa data telah memenuhi asumsi linearitas.

Estimasi Parameter Model Regresi

Estimasi parameter model regresi bertujuan untuk menjelaskan pengaruh antara variabel prediktor terhadap variabel respon. Estimasi parameter model regresi didapatkan dari perhitungan nilai konstanta dan nilai koefisien regresi masing-masing variabel prediktor sebagai berikut.

 Estimasi Parameter Model Regresi pada pH Air

Estimasi parameter model regresi pada variabel respon yaitu pH Air dengan variabel prediktor yaitu kedalaman sumur dan ketinggian tanah dijelaskan sebagai berikut.

Tabel 6. Estimasi Parameter Model Regresi pH Air

Estimasi Parameter Model Regresi				
pH Air = $4,620 + 0,1177$ Kedalaman Sumur				
+ 0,1907 Ketinggian Tanah				

Berdasarkan Tabel 6 dapat diketahui bahwa jika kedalaman sumur bernilai 0 meter dan ketinggian tanah berada pada ± 328 MDPL maka pH air sebesar 4,620 serta jika kedalaman sumur bertambah 1 meter dan ketinggian tanah berada pada ± 328 MDPL maka pH air akan bertambah sebesar 0,1177 satuan.

2. Estimasi Parameter Model Regresi pada Suhu Air

Estimasi parameter model regresi pada variabel respon yaitu suhu Air dengan variabel prediktor yaitu kedalaman sumur dan ketinggian tanah dijelaskan sebagai berikut.

Tabel 7. Estimasi Parameter Model Regresi Suhu Air

Es	Estimasi Parameter Model Regresi				
Sul	nu Air = $25,03 + 0,126$ Kedalaman				
Sı	ımur + 0,8885 Ketinggian Tanah				

Berdasarkan Tabel 7 dapat diketahui bahwa jika kedalaman sumur bernilai 0 meter dan ketinggian tanah berada pada ± 328 MDPL maka Suhu air sebesar 25,03°C serta jika kedalaman sumur bertambah 1 meter dan ketinggian tanah berada pada ± 328 MDPL maka Suhu air akan bertambah sebesar 0.126°C.

Uji Signifikansi Parameter

Uji signifikansi parameter dilakukan untuk mengetahui suatu model signifikan atau non signifikan. Terdapat 2 macam uji signifikansi parameter yaitu uji serentak dan uji parsial. Uji signifikansi parameter pada masing-masing model regresi sebagai berikut.

1. Uji Signifikansi Parameter pada Model dengan Varibel Respon pH Air

Uji Signifikansi Parameter pada Model dengan Varibel Respon pH Air dan variabel prediktor yaitu kedalaman sumur dan ketinggian tanah dijelaskan sebagai berikut.

a. Uji Serentak

Berikut disajikan uji serentak pada kedalaman sumur dan ketinggian tanah terhadap pH air sebagai berikut.

Hipotesis:

 H_0 : $\beta_i = 0$ (Kedalaman sumur dan ketinggian tanah tidak berpengaruh signifikan terhadap pH air)

 H_1 : $\beta_i \neq 0$ (Kedalaman sumur dan ketinggian tanah berpengaruh signifikan terhadap pH

Taraf Signifikan: $\alpha = 0.05$

Daerah Penolakan: Tolak H₀ jika F_{hitung} > F_{Tabel} atau P-Value $< \alpha = 0.05$ Statistik Uii:

Tabel 8. Uji Serentak Terhadap Variabel Respon pH

Air						
Source	D F	SS	MS	F	P- valu e	
Regressi on	2	5,1516	2,5758 0	14,9 3	0,00	
Eror	53	9,1455	0,1725 6			
Total	55	14,297 1				

Berdasarkan hasil statistik uji pada tabel 8 dapat diketahui bahwa F_{hitung} sebesar 14,93 > F_{Tabel} sebesar 3,17 serta diperkuat dengan P-Value = 0,000 < α = 0,05 maka dapat diambil keputusan tolak Ho sehingga dapat disimpulkan bahwa kedalaman sumur dan ketinggian tanah berpengaruh signifikan terhadap pH air.

b. Uji Parsial

Uji parsial dilakukan jika keputusan yang didapatkan dalam uji serentak adalah tolak H₀. Uji parsial pada kedalaman sumur terhadap pH air sebagai berikut.

Hipotesis:

 H_0 : $\beta_1 = 0$ (Kedalaman sumur tidak berpengaruh signifikan terhadap pH air)

 H_1 : $\beta_1 \neq 0$ (Kedalaman sumur berpengaruh signifikan terhadap pH air)

Taraf Signifikan: $\alpha = 0.05$

Daerah Penolakan: Tolak H₀ jika T_{hitung} >

 T_{Tabel} atau P-Value $< \alpha = 0.05$

Statistik Uji:

Tabel 9. Uji Parsial Kedalaman Sumur Terhadap pH

T _{tabel}	Thitung	P-value
2,006	1,74	0,088

Berdasarkan hasil statistik uji pada tabel 9 dapat diketahui bahwa Thitung sebesar 1,74 < T_{Tabel} sebesar 2,006 serta diperkuat dengan $P\text{-}Value = 0,088 > \alpha = 0,05$ maka dapat diambil keputusan gagal tolak H_0 sehingga dapat disimpulkan bahwa kedalaman sumur tidak berpengaruh signifikan terhadap pH air. Uji parsial pada ketinggian tanah terhadap pH air sebagai berikut.

Hipotesis:

H₀: $\beta_2 = 0$ (Ketinggian tanah tidak berpengaruh signifikan terhadap pH air)

H₁: $\beta_2 \neq 0$ (Ketinggian tanah berpengaruh signifikan terhadap pH air)

Taraf Signifikan: $\alpha = 0.05$

Daerah Penolakan: Tolak H₀ jika T_{hitung} >

 T_{Tabel} atau P-Value $< \alpha = 0.05$

Statistik Uji:

Tabel 10. Uji Parsial Ketinggian Tanah Terhadap pH Air

T_{tabel}	Thitung	P-value
2,006	4,27	0,000

Berdasarkan hasil statistik uji pada tabel 10 dapat diketahui bahwa T_{hitung} sebesar 4,27 > T_{Tabel} sebesar 2,006 serta diperkuat dengan $P\text{-}Value = 0,000 < \alpha = 0,05$ maka dapat diambil keputusan tolak H_0 sehingga dapat disimpulkan bahwa ketinggian tanah berpengaruh signifikan terhadap pH air.

2. Uji Signifikansi Parameter pada Model dengan Varibel Respon Suhu Air

Uji Signifikansi Parameter pada Model dengan Varibel Respon Suhu Air dan variabel prediktor yaitu kedalaman sumur dan ketinggian tanah dijelaskan sebagai berikut.

a. Uji Serentak

Berikut disajikan uji serentak pada kedalaman sumur dan ketinggian tanah terhadap suhu air sebagai berikut.

Hipotesis:

H₀: $\beta_j = 0$ (Kedalaman sumur dan ketinggian tanah tidak berpengaruh signifikan terhadap suhu air)

H₁: $\beta_j \neq 0$ (Kedalaman sumur dan ketinggian tanah berpengaruh signifikan terhadap suhu air)

Taraf Signifikan: $\alpha = 0.05$

Daerah Penolakan: Tolak H_0 jika $F_{hitung} > F_{Tabel}$ atau $P\text{-}Value < \alpha = 0.05$ Statistik Uji:

Tabel 11. Uji Serentak Terhadap Variabel Respon pH Air

Source	D F	SS	MS	F	P- valu e
Regressi on	2	270,70 6	135,35 3	330,6 4	0,00
Eror	53	21,696	0,409		
Total	55	292,40 2			

Berdasarkan hasil statistik uji pada tabel 11 dapat diketahui bahwa F_{hitung} sebesar 330,64 > F_{Tabel} sebesar 3,17 serta diperkuat dengan $P\text{-}Value = 0,000 < \alpha = 0,05$ maka dapat diambil keputusan tolak H_0 sehingga dapat disimpulkan bahwa kedalaman sumur dan ketinggian tanah berpengaruh signifikan terhadap suhu air.

b. Uji Parsial

Uji parsial dilakukan jika keputusan yang didapatkan dalam uji serentak adalah tolak H₀. Uji parsial pada kedalaman sumur terhadap suhu air sebagai berikut.

Hipotesis:

H₀: $\beta_I = 0$ (Kedalaman sumur tidak berpengaruh signifikan terhadap suhu air) H₁: $\beta_I \neq 0$ (Kedalaman sumur berpengaruh

signifikan terhadap suhu air) Taraf Signifikan: $\alpha = 0.05$

Daerah Penolakan: Tolak H₀ jika T_{hitung} >

 T_{Tabel} atau P- $Value < \alpha = 0.05$

Statistik Uji:

Tabel 12. Uji Parsial Kedalaman Sumur Terhadap Suhu Air

T _{tabel}	Thitung	P-value
2,006	1,21	0,231

Berdasarkan hasil statistik uji pada tabel 12 dapat diketahui bahwa T_{hitung} sebesar 1,21 $< T_{Tabel}$ sebesar 2,006 serta diperkuat dengan $P\text{-Value} = 0,231 > \alpha = 0,05$ maka dapat

diambil keputusan gagal tolak H₀ sehingga dapat disimpulkan bahwa kedalaman sumur tidak berpengaruh signifikan terhadap suhu air. Uji parsial pada ketinggian tanah terhadap suhu air sebagai berikut.

Hipotesis:

 H_0 : $\beta_2 = 0$ (Ketinggian tanah tidak berpengaruh signifikan terhadap suhu air)

H₁: $\beta_2 \neq 0$ (Ketinggian tanah berpengaruh signifikan terhadap suhu air)

Taraf Signifikan: $\alpha = 0.05$

Daerah Penolakan: Tolak H₀ jika -T_{hitung} < -

 T_{Tabel} atau P-Value $< \alpha = 0.05$

Statistik Uji:

Tabel 13. Uji Parsial Ketinggian Tanah Terhadap pH Air

T_{tabel}	Thitung	P-value
-2,006	-12,91	0,000

Berdasarkan hasil statistik uji pada tabel 13 dapat diketahui bahwa T_{hitung} sebesar - 12,91 < - T_{Tabel} sebesar -2,006 serta diperkuat dengan $P\text{-}Value = 0,000 < \alpha = 0,05$ maka dapat diambil keputusan tolak H_0 sehingga dapat disimpulkan bahwa ketinggian tanah berpengaruh signifikan terhadap suhu air.

Uji Kebaikan Model

Uji kebaikan model pada variabel prediktor yang mempengaruhi variabel respon pH air dan suhu air adalah sebagai berikut.

 Uji Kebaikan Model dengan Variabel Respon pH Air

Uji kebaikan model pada variabel prediktor yang mempengaruhi variabel respon pH air sebagai berikut.

Tabel 14. Uji Kebaikan Model dengan Variabel Respon pH Air

R-Sq
36,03%

Berdasarkan hasil analisis pada tabel 14 dapat diketahui bahwa proporsi variabelitas pH air dapat dijelaskan oleh variabel kedalaman sumur dan ketinggian tanah sebesar 36,03% dan sisanya sebesar 63,97% dipengaruhi variabel lain diluar model.

2. Uji Kebaikan Model dengan Variabel Respon Suhu Air

Uji kebaikan model pada variabel prediktor yang mempengaruhi variabel respon suhu air sebagai berikut.

Tabel 15. Uji Kebaikan Model dengan Variabel Respon Suhu Air

R-Sq
92,58%

Berdasarkan hasil analisis pada tabel 15 dapat diketahui bahwa proporsi variabelitas suhu air dapat dijelaskan oleh variabel kedalaman sumur dan ketinggian tanah sebesar 92,58% dan sisanya sebesar 7,42% dipengaruhi variabel lain diluar model.

Uji Multikolinearitas

Uji multikolinearitas digunakan untuk mendeteksi hubungan antar variabel prediktor. Multikolinearitas data dideteksi dengan melihat nilai VIF.

 Uji Multikolinearitas pada Model dengan Variabel Respon pH Air

Uji multikolinearitas pada variabel prediktor yang mempengaruhi variabel respon berupa pH air sebagai berikut.

Hipotesis:

H₀: Tidak terdapat multikolinearitas antar variabel prediktor yang mempengaruhi variabel respon berupa pH air

H₁: Terdapat multikolinearitas antar variabel prediktor yang mempengaruhi variabel respon berupa pH air

Daerah Penolakan: Tolak H₀ jika nilai VIF > 10

Tabel 16. Uji Multikolinearitas pada Model dengan Variabel Repon pH Air

Variabel	VIF
Kedalaman Sumur	3,40
Ketinggian Tanah	3,40

Berdasarkan hasil analisis pada tabel 16 dapat diketahui bahwa nilai VIF pada masing-masing variabel prediktor sebesar 3,40 yang lebih kecil atau kurang dari 10 maka dapat diambil keputusan gagal tolak H₀ sehingga dapat disimpulkan bahwa tidak terdapat multikolinearitas antar variabel prediktor yang mempengaruhi variabel respon berupa pH air.

2. Uji Multikolinearitas pada Model dengan Variabel Respon Suhu Air

Uji multikolinearitas pada variabel prediktor yang mempengaruhi variabel respon berupa suhu air sebagai berikut.

Hipotesis:

H₀: Tidak terdapat multikolinearitas antar variabel prediktor yang mempengaruhi variabel respon berupa suhu air

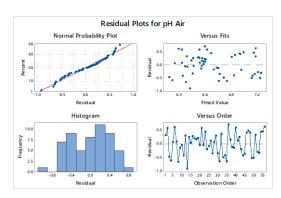
H₁: Terdapat multikolinearitas antar variabel prediktor yang mempengaruhi variabel respon berupa suhu air

Daerah Penolakan: Tolak H₀ jika nilai VIF > 10

Statistik Uji:

Tabel 17. Uji Multikolinearitas pada Model dengan Variabel Repon Suhu Air

Variabel	VIF
Kedalaman Sumur	3,40
Ketinggian Tanah	3,40

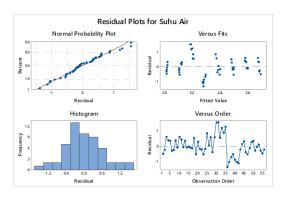

Berdasarkan hasil analisis pada tabel 17 dapat diketahui bahwa nilai VIF pada masing-masing variabel prediktor sebesar 3,40 yang lebih kecil atau kurang dari 10 maka dapat diambil keputusan gagal tolak H₀ sehingga dapat disimpulkan bahwa Tidak terdapat multikolinearitas antar variabel prediktor yang mempengaruhi variabel respon berupa suhu air.

Uji Asumsi Residual IIDN

Uji asumsi residual IIDN (Identik, Independen, Distribusi Normal) merupakan uji yang harus dilakukan untuk membuktikan apakah data yang digunakan memenuhi ketiga asumsi tersebut.

1. Uji asumsi residual IIDN pH Air

Uji asumsi residual IIDN (Identik, Independen, Distribusi Normal) pada variabel respon yaitu pH air sebagai berikut.



Gambar 3. Uji Asumsi Residual IIDN pada Variabel pH Air

Gambar 3 menunjukkan bahwa secara visual pada normal probability plot residual dari data mengikuti garis normal sehingga residual data memenuhi asumsi distribusi normal. Versus fits menunjukkan bahwa plot menyebar secara acak sehingga residual dari data memenuhi asumsi identik. Histogram menunjukkan terdapat kemiringan (*skewness*) pada data, serta pada grafik versus order menunjukkan bahwa data memenuhi asumsi independen karena penyebaran residual terjadi secara acak.

2. Uji asumsi residual IIDN Suhu Air

Uji asumsi residual IIDN (Identik, Independen, Distribusi Normal) pada suhu air sebagai berikut.

Gambar 4. Uji Asumsi Residual IIDN pada Variabel Suhu Air

Gambar 4 menunjukkan bahwa secara visual pada normal probability plot residual dari data mengikuti garis normal sehingga residual data memenuhi asumsi distribusi normal. Versus fits menunjukkan bahwa plot menyebar secara acak sehingga residual dari data memenuhi asumsi identik. Histogram menunjukkan tidak terdapat kemiringan (*skewness*) pada data, serta pada grafik versus order menunjukkan bahwa data memenuhi asumsi independen karena penyebaran residual terjadi secara acak.

KESIMPULAN

Berdasarkan hasil analisis dan pembahasan maka diperoleh kesimpulan sebagai berikut :

- 1. Karaktersitik pH air memiliki rata-rata sebesar 6,7 dan karakteristik suhu air memiliki rata-rata sebesar 23,43°C.
- 2. Terdapat hubungan antara pH air dan kedalaman sumur serta hubungan antara suhu air dan kedalaman sumur.
- 3. Jika kedalaman sumur 0 meter pada ketinggian ± 328 mdpl maka pH air sebesar 4,620 dan jika kedalaman sumur bertambah 1 meter maka pH air bertambah 0,1177. Jika kedalaman sumur 0 meter pada ketinggian ± 328 mdpl maka suhu air sebesar 25,03°C dan jika kedalaman sumur bertambah 1 meter maka suhu air bertambah 0,126°C.
- 4. Berdasarkan hasil uji serentak, kedalaman sumur dan ketinggian tanah berpengaruh signifikan terhadap pH dan suhu air.
- Berdasarkan hasil uji parsial, kedalaman sumur tidak berpengaruh signifikan terhadap pH dan suhu air. Namun ketinggian tanah berpengaruh signifikan terhadap pH dan suhu air.
- 6. Berdasarkan hasil uji kebaikan model, proporsi variabelitas pH air dapat dijelaskan oleh variabel kedalaman sumur dan ketinggian tanah sebesar 36,03% dan 63,97% dipengaruhi variabel

- lain diluar model. Proporsi variabelitas suhu air dapat dijelaskan oleh variabel kedalaman sumur dan ketinggian tanah sebesar 92,58% dan 7,42% dipengaruhi variabel lain diluar model.
- 7. Berdasarkan hasil uji multikolinearitas, tidak terdapat multikolinearitas antar variabel prediktor yang mempengaruhi variabel respon berupa pH dan suhu air.
- 8. Berdasarkan hasil uji asumsi residual IIDN diketahui bahwa pH dan suhu air telah memenuhi asumsi residual IIDN.

DAFTAR PUSTAKA

- [1] D. M. Atmaja, "Analisis Kualitas Air Sumur di Desa Candikuning Kecamatan Baturiti," *MKG*, vol. 19, no. 2, p. 147, Feb. 2019, doi: 10.23887/mkg.v19i2.14644.
- [2] D. F. Manullang and N. Siregar, "Identifikasi Kejernihan Air Sumur Bor Ditinjau dari Daya Hantar Listrik (DHL) dengan Konduktivitimeter di Desa Sentang Teluk Mengkudu Kecamatan Bedagai," Kabupaten Serdang einstein, vol. 6, no. 2, Jan. 2019, doi: 10.24114/einstein.v6i2.12077.
- [3] A. Karismawan, D. N. Sahdarani, M. Prahastomi, and T. E. Prayogi, "Studi Kualitas Air Tanah Berdasarkan Sifat Fisik dan Kimia Menggunakan Analisis Hidrogeologi dan Hidrokimia di Jakarta Barat," *JIPS*, vol. 2, no. 2, pp. 46–54, Aug. 2021, doi: 10.51673/jips.v2i2.698.
- [4] M. R. A. Al-Barwary, R. A. Meshabaz, N. J. Hussein, and N. H. Ali, "A Comparison of water quality

- between well and spring samples selected from Soran District, Northern Erbil Governorate, Kurdistan Region Iraq," *IOP Conf. Ser.: Mater. Sci. Eng.*, vol. 454, p. 012062, Dec. 2018, doi: 10.1088/1757-899X/454/1/012062.
- [5] N. Yuliani and N. A. Lestari, "Kualitas Air Sumur Bor di Perumahan Bekas Persawahan Gunung Putri Jawa Barat," p. 7, 2017.
- [6] H. Hariyadi, M. Kamil, and P. Ananda, "Sistem Pengecekan pH Air Otomatis menggunakan Sensor pH Probe Berbasis Arduino pada Sumur Bor," *RTJ*, vol. 3, no. 2, pp. 340–346, Jun. 2020, doi: 10.31869/rtj.v3i2.1930.
- [7] S. Bahri, B. Harlianto, H. E. Saputra, A. H. Putra, and M. Sariyanti, "Analisis Faktor Abiotik Sumber Air Sumur di Lingkungan Kawasan Pesisir Pantai: Studi Kasus Kawasan Kampus Universitas Bengkulu," *BIOEDUSAINS: Jurnal Pendidikan Biologi dan Sains*, vol. 3, no. 2, p. 9, Desember 2020.
- [8] B. M. Saalidong, S. A. Aram, S. Otu, and P. O. Lartey, "Examining the

- dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems," *PLoS ONE*, vol. 17, no. 1, p. e0262117, Jan. 2022, doi: 10.1371/journal.pone.0262117.
- [9] N. Rahmanian *et al.*, "Analysis of Physiochemical Parameters to Evaluate the Drinking Water Quality in the State of Perak, Malaysia," *Journal of Chemistry*, vol. 2015, pp. 1–10, 2015, doi: 10.1155/2015/716125.
- A. R. Singkam, I. L. Lestari, F. [10] Agustin, L. Miftahussalimah, A. Y. Maharani. and R. Lingga, "Perbandingan Kualitas Air Sumur dan Bor Galian Berdasarkan Parameter Kimia dan Parameter Fisika," **BIOEDUSAINS:** Jurnal Pendidikan Biologi dan Sains, vol. 4, no. 2, p. 11, Desember 2021.
- [11] A. Sukoasih and T. Widiyanto, "Hubungan Antara Suhu, pH dan Berbagai Variasi Jarak dengan Kadar Timbal (Pb) pada Badan Air Sungai Rompang dan Air Sumur Gali Industri Batik Sokaraja Tengah Tahun 2016," *Kesling*, vol. 36, no. 4, pp. 360–368, Dec. 2017, doi: 10.31983/keslingmas.v36i4.3115.

Muhammad Syafa Tirtana Sanjaya: Analisis Pengaruh Ketinggian Tanah dan Kedalaman Sumur terhadap Suhu dan pH Air Sumur di Kabupaten Blitar