Pengaruh Penambahan Co-Doping Mg/La Terhadap Karakterisasi Tio₂ Sebagai Fotoelektroda

Nurul Azmi, Ismail Ismail, dan Mursal*

Jurusan fisika, Universitas Syiah Kuala, Banda Aceh, Indonesia, 23111 Email: mursal@unsyiah.ac.id

Diterima (31 Agustus 2020), Direvisi (18 Januari 2021)

Abstract. The effect of Mg/La co-doping addition on the characteristics of TiO₂ as photoelectrode have been studied. This study aims to investigate the effect of Mg/La co-doping concentration on the characteristics of TiO₂. This study aims investigate the effect of Mg/La co-doping concentration on the characteristics of TiO₂. Mg/La was varied from 0% mol, 0.4 / 0.6% mol, and 0.6 / 0.4% mol. Synthesis of TiO₂ co-doping Mg/La was done by sol gel method. The resulting of powder pure TiO₂ and co-doping Mg/La was made to paste, and was deposited on a glass substrate with a size of 2.5 x 2.5 cm and sintered at 600°C for 1 hour. Mg / La co-doped TiO₂ layers were characterized using XRD, UV-Vis, and FTIR spectrometers. The results showed that TiO₂ was the mosdominan phase appeared in pure TiO₂ sample. The phase of MgO, MgTiO₃, Mg₂TiO₄, and La₂O₃ were found in Mg/La co-doped TiO₂ samples. The crystal size of Mg/La co-doped TiO₂ was varied from 8.85 to 7.70 nm. In this research, we obtained that the energy gap was varied from 3.52 to 3.5 eV depent on co-dopant concentration. FTIR measurement showed groups of Ti-O, Ti-O-Ti, Ti-O-O, and H-O.

Keywords: Co-doping Mg/La, photoelectrode, Sol Gel method, TiO₂.

Abstrak. Telah dilakukan pengaruh penambahan co-doping Mg/La terhadap karakteristik TiO₂ sebagai fotoelektroda. Penelitian ini bertujuan untuk mempelajari pengaruh variasi konsentrasi co-doping Mg/La terhadap karakterisasi TiO₂. Perbandingan Mg/La divariasikan 0% mol, 0,4/0,6% mol, dan 0,6/0,4% mol. Sinteta TiO₂ co-doping Mg/La dilakukan dengan metode sol gel. Serbuk TiO₂ murni dan co-doping Mg/La yang dihasilkan dijadikan pasta, dan dideposisikan di atas substrat dengan ukuran 2,5 x 2,5 cm dan disintering pada suhu 600°C selama 1 jam. Lapisan TiO₂ co-doping Mg/La dikarakterisasi menggunakan XRD, spektrometer UV-Vis, dan spectrometer FTIR. Hasil penelitian menunjukkan fasa-fasa TiO₂ paling dominan muncul pada TiO₂ murni. Setelah dilakukan co-doping Mg/La fasa-fasa yang muncul MgO, MgTiO₃, Mg₂TiO₄, dan La₂O₃. Ukuran kristal dari TiO₂ co-doping Mg/La berkisar 8,85 - 7,70 nm. Energi gap TiO₂ co-doping Mg/La yang diperoleh pada penelitian ini berkisar antara 3,52 – 3,5 eV. Penambahan co-doping Mg/La dapat mengurangi energi gap. Hasil Pengukuran FTIR menunjukkan adanya pembentukan gugus Ti-O, Ti-O-Ti, Ti-O-O, dan H-O.

Kata kunci: Co-doping Mg/La, fotoelektroda, metode sol gel, TiO₂.

PENDAHULUAN

Sel surya saat ini menjadi salah satu devais alternatif yang dapat digunakan sebagai penghasil energi listrik. Sel surya dapat mengkonversikan energi matahari menjadi energi listrik secara langsung dengan memanfaatkan sifat fotofoltaik dari

material. Salah satu jenis sel surya yang sedang dikembangkan adalah *Dye Sensitized Solar Cells* (DSSC). DSSC menjadi pilihan karena memiliki keunggulan dalam segi biaya yang relatif rendah dan proses fabrikasi lebih singkat [1]. DSSC tersusun dari beberapa bagian penting seperti subtrat, fotoelektroda, dye, elektrolit, dan kounter

elektroda. Fotoelektroda menjadi komponen penting pada DSSC, yang berfungsi sebagai fotokatalis. Fotoelektroda yang baik memiliki stabilitas terhadap fotokorosi dan energi celah pita yang relatif rendah sehingga memudahkan terjadi penyerapan energi foton lebih banyak dalam spektrum cahaya tampak [2].

Salah satu semikonduktor yang biasa digunakan sebagai fotoelektroda adalah TiO₂. TiO₂ dipilih karena memiliki potensi sebagai fotooksidasi, tinggi bersifat fotokatalis, ekonomis, dan mudah didapatkan. Namun TiO₂ memiliki kekurang ketika diaplikasikan dalam DSSC, yaitu masih mudah terjadi rekombinasi elektron. Hal ini disebabkan energi gap dari TiO₂ masih tergolong tinggi [3]. Permasalahan tersebut dapat diatasi dengan mendoping TiO₂ dengan material lain. Pendopingan dilakukan untuk mengubah morfologi, struktur, sifat listrik, dan optik dari bahan induk [3,4]. Pendopingan pada umumnya dilakukan dengan menambahkan satu jenis material dopan (misalnya Mg atau La) ke dalam TiO_2 . Namun untuk meningkatkan kinerja TiO_2 sebagai fotokatalitik maka dilakukan pendopingan dengan dua jenis material dopan ke dalam TiO₂, yang dikenal dengan istilah co-doping. Co-doping dapat meningkatkan fotoaktifitas TiO₂ ketika terpapar cahaya tampak dibandingkan dengan TiO₂ murni [5].

Shakir et al., (2018) mencoba TiO₂ doping Mg. Doping Mg dapat menurunkan energi gap dari 3,2 eV menjadi 2,8 eV [6]. doping komposisi Mg mempengaruhi ukuran kristal dari TiO₂ yaitu dari 53,92 nm menjadi 49,23 nm [7]. Variasi suhu anneling juga dapat mempengaruhi energi gap, semakin besar suhu anneling yang diberikan maka energi gap yang dihasilkan semakin kecil [8]. Hal yang sama juga berlaku pada pendopingan La, dimana penambahan doping La juga menurunkan energi gap dari 2,98 eV menjadi 2,75 eV [9]. Hasil penelitian Rafieh et al., (2017) menunjukan co-doping Mg/la dapat memperkecil ukuran kristal dari TiO₂ dan meningkatkan efesiensi DSSC ketika diaplikasikan [10]. Dalam tulisan ini, peneliti menyajikan hasil penelitian tentang TiO₂ co-doping Mg/La dengan memvariasikan konsentrasi doping Mg/La dengan menggunakan metode sol gel.

METODE PENELITIAN

Proses deposisi TiO₂ murni dan codoping dilakukan dengan metode sol gel [11]. Bahan utama yang digunakan Titanium (IV) isopropoxide (Sigma Aldrich 97%), Magnesium Acetate Tethahydrate (Sigma Aldric 99%), Lanthanum (III) Acetate hydrate (sigma aldric 98%). Pelarut digunakan adalah isopropanol, yang **HC1** dan ethanol. aquades, Variasi konsentrasi co-doping Mg/La merujuk pada Titanium (IV) isopropanol 1. dicampurkan dengan isopropanol aquades sebanyak 50:5 (v:v) sampai larutan menjadi berubah menjadi putih. Selanjutnya co-doping Magnesium Acetate Tethahydrate dan Lanthanum (III) Acetate hydrate dicampur dan di tambah HCl (1 ml) selanjutnya distir selama 2 jam. Larutan yang diperoleh diendapkan selama 12 jam pada suhu ruang sampai berubah menjadi gel. Selanjutnya sampel dikeringkan dalam oven dan dilakukan pencucian sebanyak dua kali dengan ethanol, kemudian sampel dikeringkan dalam oven dengan suhu 60 °C. Sampel vang dihasilkan dari proses pengeringan disinterring selama 5 jam dengan suhu 500 °C. Proses pembuatan pasta TiO2 murni dan co-doping Mg/La yaitu dengan menambahkan serbuk TiO2 murni dan yang telah didoping dengan asam acetate (0.76 ml), Ethanol (10 ml) dan Triton X-100 dua tetes dan distir sampai sampel menjadi pasta. Pasta yang dihasilkan dideposisikan di atas substrat dengan ukuran 2.5x2.5 cm, kemudian disinterring pada suhu 600 °C dengan waktu tahan 1 jam.

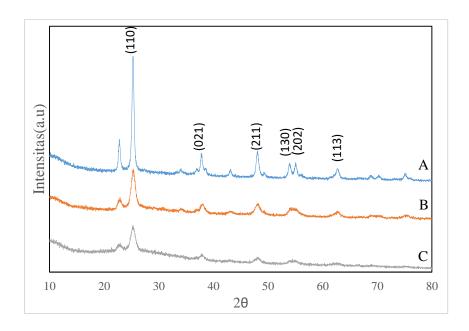
700 1 1 4	**	1		3 f /T
Tabel I	Variasi	konsentrasi	co-doning	· Mg/La

No	Nama Sampel	Konsentrasi Titanium (IV) Isopropoxide (% mol)	Konsentrasi Magnesium Acetate Tethahydrat (% mol)	Konsentrasi Lanthanum (III) Acetate Hydrate (% mol)
1	A	4	-	-
2	В	4	0,4	0,6
3	С	4	0,6	0,4

Karakterisasi *X-Ray Diffraction* (XRD) dilakukan untuk melihat struktur kristal dan ukuran butir kristal TiO₂ co-doping Mg/La. Sifat optic dari TiO₂ co-doping Mg/La dianalisis berdasarkan spektrum UV-Vis. Selanjutnya pengujian FTIR dilakukan untuk melihat gugus fungsi dari sampel yang terbentuk setelah proses pendopingan.

HASIL DAN PEMBAHASAN

Hasil Analisis XRD


Pola difraksi sinar-X (XRD) dari TiO₂ co-doping Mg/La diperlihatkan Gambar 1. Pada gambar terlihat fasa-fasa yang muncul yaitu fasa TiO₂ pada sudut $2\theta = 25,26,48,02,37,49,53,$ dan 55 dengan bidang hkl 110, 211, 021, 202, 130, dan 113 terlihat pada TiO₂ murni. Pola difraksi setelah dilakukan co-doping Mg/La dengan konsentasi yang bervariasi menghasilkan fasa TiO₂ dan fasa MgO pada sudut $2\theta = 36,90$ dan 62,02. Fasa MgTiO₃ pada sudut $2\theta = 38,52$ dengan bidang hkl 309 dan fasa Mg₂TiO₄ muncul pada sudut $2\theta = 54,22$ dan 56. Sedangkan

fasa La₂O₃ muncul pada sudut 2θ = 26,36 dan 30,58. Puncak dfraksi dari ketiga sampel yang paling banyak muncul adalah TiO₂, sedangkan puncak difraksi MgO, MgTiO₃, Mg₂TiO₄, dan La₂O₃ muncul pada intensitas yang sangat rendah. Hal ini membuktikan bahwa dengan adanya co-doping Mg/La mengubah fasa induk dari TiO₂ terlihat puncak dari TiO₂ semakin melebar sehingga mengakibatkan distorsi kisi pada struktur TiO₂ dan mempengaruhi kristalinitas dari TiO₂ [10], [12].

Ukuran kristal diperoleh dari hasil perhitungan kuantitatif menggunakan metode scherrer dari **Persamaan 1**, diperoleh hasil seperti pada **Tabel 2**.

$$D = \frac{0.95 \,\lambda}{B \cos \theta} \tag{1}$$

Dimana D adalah ukuran butir rata-rata dari sampel (Å), λ adalah panjang gelombang dari sinar-x yang digunakan XRD (Å), B adalah pelebaran setengah puncak difraksi maksimum yaitu *Full Width at Half Maximum* (FWHM), θ adalah sudut puncak difraksi sinar-x.

Gambar 1. Pola difraksi sinar-X lapisan TiO₂ *co-doping* Mg/La (A. TiO₂ murni, B. TiO₂ *co-doping* Mg/La 0.4/0.6% mol, dan C. TiO₂ *co-doping* Mg/La 0,6/0,4% mol).

Berdasarkan hasil perhitungan terlihat ukuran murni butir kristal TiO_2 19,08 nm. Penambahan co-doping Mg/La mengakibatkan ukuran butir kristal dari TiO2 nm, menjadi 8,85 dan 7,70 seperti diperlihatkan dalam **Tabel 2**. Perubahan ukuran butir kristal yang semakin kecil (dalam kisaran nanometer) dapat meningkatkan kemampuan absorpsi semikonduktor sebagai fotokatalis oksida [8]. Ukuran butir kristal dari material juga sangat dipengaruhi oleh ukuran jari-jari ionik material yang digunakan. Ukuran jari-jari ionik Mg²⁺ yaitu 0.72 Å, jari-jari ionik La³⁺ yaitu 1,03 Å, sedangkan jari-jari ionik Ti⁴⁺ yaitu 0.61 Å [10,11].

Tabel 2. Ukuran butir kristal dari TiO2 co-doping Mg/La

No	Nama Sampel	2θ (°)	FWHM	Ukuran Kristal (nm)
1	A	25.2580	0.4512	19.08
2	В	25.3058	0.9716	8.85
3	C	25.2780	1.1160	7.70

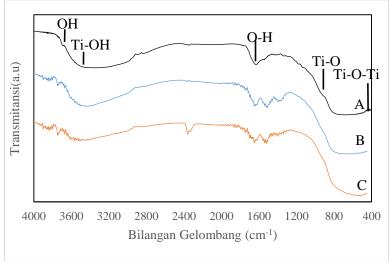
 $\textbf{Tabel 3}. \ Perhitungan \ Energi \ gap \ lapisan \ TiO_2 \ \textit{co-doping} \ Mg/La$

No	Nama Sampel	λ_{cutoff} (nm)	Energi gap (eV)
1	A	352	3.52
2	В	353	3.51
3	C	354	3.5

Analisis Sifat Optik

Sifat optik TiO₂ co-doping Mg/La diperoleh dari hasil pengujian menggunakan spektrometer UV-Vis Shimadzu UV-1700 dengan rentang panjang gelombang yang diberikan 300-800 nm. Berdasarkan tersebut, spektrum absorpsi diperoleh panjang gelombang dan nilai λ_{cutoff}, sehingga ditentukan nilai energi gap menggunakan persamaan 2.

$$E = \frac{hc}{\lambda} \tag{2}$$


Dimana E adalah energi foton (eV), h adalah konstanta Planck (6,626 x 10^{-34} J.s), c adalah kecepatan cahaya (3 x 10^8 m/s), dan λ adalah panjang gelombang cahaya yang datang (m).

Variasi konsentrasi Mg/La sangat mempengaruhi energi gap seperti ditunjukan pada Tabel 3. Energi gap pada TiO₂ murni yaitu 3,52 eV. Namun setelah dilakukan co-doping Mg/La maka energi gap turun sebesar 0,01. Hal ini disebabkan energi gap dari Mg dan La lebih kecil dibandingkan dengan energy gap TiO₂, sehingga penambahan co-diping Mg/La mempersempit celah enegi TiO2. Shakir et al, (2018) mendapatkan bahwa penambahan doping Mg menurunkan energi gap dari 3,2 eV menjadi

2,9 eV [6]. Doping La juga dapat menurunkan energi gab TiO₂ menjadi 2,75 eV. Penambahan co-doping Mg/La dapat menurunkan energi gap dari TiO₂ sebesar 0.05 eV [10,11,13].

Analisa FTIR

Spektrum FTIR pada lapisan TiO₂ codoping Mg/La terlihat pada Gambar 2. Spektrum yang dihasilkan menampilkan rantai polimer Ti-O-Ti pada bilangan gelombang 471 cm⁻¹, Gugus TiO₂ stretching muncul pada bilangan gelombang 516,92 cm⁻¹, dan Ti-O terlihat pada bilangan gelombang 789 cm⁻¹. Vibrasi pita Ti-O-O teridentifikasi pada panjang gelombang 693 cm⁻¹. Pelebaran pita bilangan gelombang 3000-3600 cm⁻¹ membentuk gugus OH. Karakterisasi mode vibrasi O-H terlihat pada bilangan gelombang 3414 cm⁻¹ dan 1635 cm⁻ dan Ti-OH telihat pada bilangan gelombang 3417 cm⁻¹. Co-doping Mg/La membentuk gugus La₃-TO pada bilangan gelombang 1300-1700 cm⁻¹, gugus La₃-TO terbentuk pada permukaan H₂O [9]. Gambar 2 menunjukkan dengan adanya co-doping Mg/La gugus O-H semakin banyak muncul dan gugus O-H juga muncul pada bilangan cm⁻¹ gelombang 2000-3600 namun puncaknya terjadi pelebaran seperti terlihat pada sampel C.

Gambar 2. Spektrum FTIR TiO₂ *co-doping* Mg-La (A. TiO₂ murni, B. TiO₂ *co-doping* Mg/La 0.4/0.6% mold an C. TiO₂ *co-doping* Mg/La 0.6/0.4% mol).

KESIMPULAN

Berdasarkan hasil penelitian didapatkan bahwa variasi komposisi codoping Mg/La yang diberikan meningkatkan derajat kekristalan TiO2. TiO2 co-doping Mg/La mempengaruhi ukuran kristal TiO₂ dari 19,08 menjadi 7,70 nm dengan seiring penambahan konsentrasi Mg/La. Pengurangan ukuran butir kristal mengakibatkan munculnya pori-pori sehingga memperluas permukaan sampel. Penambahan co-doping Mg/La mempengaruhi energi gap menjadi lebih kecil dari 3,52 menjadi 3,5 eV, sehingga TiO₂ berpotensi sebagai fotoelektroda dan fotoaktif. Co-doping bersifat Mg/La memperluas gugus rantai polimer O-H, sehingga gugus O-H paling banyak muncul.

UCAPAN TERIMAKASIH

Penulis mengucucapkan terimakasih kepada Syarifah Fathmiyah, S.Si dari laboratorium material FMIPA, Nurhazanah, ST dari laboratorium rekayasa Teknik kimia, dan Muttaqin, M.Pd dari laboratorium kimia FKIP Universitas Syiah Kuala atas bantuannya dalam pengujian sampel.

DAFTAR PUSTAKA

- [1] D. Y. Kim dan M. Kang, "Diversi Fi cation of Photoelectric Effi ciency on DSSCs Assembled According to the Change of Coating Layers of Px-TiO₂ Films", *Journal Material Chemistry and Physics*. vol. 136, pp. 947–953, 2012.
- [2] C. Zhang, S. Chen, L. Mo, Y. Huang, H. Tian, L. Hu, Z. Huo, S. Dai, F. Kong, dan X. Pan, "Charge Recombination and Band-Edge Shift in the Dye-Sensitized", *The Journal of Physical Chemistry*. pp. 16418–16424, 2011.
- [3] C. Dette, M. A. Pérez-Osorio, C. S. Kley, P. Punke, C. E. Patrick, P.

- Jacobson, F. Giustino, S. Jung, dan K. Kern, "TiO₂ Anatase with a Bandgap in the Visible Region", *Nano Letters*. 2014.
- [4] Y. Duan, N. Fu, Q. Zhang, Y. Fang, X. Zhou, dan Y. Lin "Influence of Sn Source on the Performance of Dye-Sentized Solar Cells Based on Sn-Doped TiO₂ Photoanodes: A Strategy for Choosing an Appropriate Doping Source", *Electrochimica Acta.* no. March, 2013.
- [5] G. S. Mital danT. Manoj, "A Review of TiO₂ Nanoparticles", *Chinese Science Bulletin*. vol. 56, no. 16, pp. 1639–1657, 2011.
- [6] S. Shakir, M. Abd-ur-rehman, K. Yunus, dan M. Iwamoto, "Fabrication of Un-Doped and Magnesium Doped TiO₂ FILMS by Aerosol Assisted Chemical Vapor Deposition for Dye Sensitized Solar Cells", *Journal of Alloys Compounds*. vol. 737, pp. 740–747, 2018.
- [7] Mursal, Ismail, V. Yuniar, dan E. Yufita, "Structural and Optical Properties of MgO-doped TiO₂ Prepared by Sol-Gel Method", *Coff. AIC.* vol. 110007, no. March, 2020.
- [8] W. Angreni, E. Yusibani, dan Mursal, "Metode Sol Gel MgTiO₃ Thin Films Synthesis by Sol Gel Method", *Journal of Physics Aceh.* vol. 7, no. 2, pp. 2–3, 2018.
- [9] Y. Huang, J. Cao, F. Kang, S. You, C. Chang, dan Y. Wang, "High Selectivity of Visible-Light-Driven La-doped TiO₂ Photocatalysts for NO Removal," pp. 2555–2565, 2017.
- [10] A. I. Rafieh, P. Ekanayake, A. Ling, and C. Ming, "Effects of ionic radii of co-dopants (Mg, Ca, Al and La) in TiO₂ on performance of dyesensitized solar cells," *Sol. Energy*, vol. 141, pp. 249–255, 2017.
- [11] A. Rajour Tanyi, "Enhanced Efficiency of Dye-Sensitized Solar

- Cells Based on Mg and La Co-Doped Tio 2 Photoanodes", *Electrochimica Acta*, vol. 178, pp. 240–248, 2015.
- [12] D. A. H. Hanaor dan C. C. Sorrell, "Review of The Anatase to Rutile Phase Transformation", *Intech*, pp. 855–874, 2011.
- [13] N. T. R. N. Kumara dan P.

Ekanayake, "Study of the Enhancement of Cell Performance of Dye Sensitized Solar Cells Sensitized With Nephelium lappaceum (F: Sapindaceae)", *Journal of Solar Energy Engineering*. vol. 135, no. August 2013, pp. 1–5, 2016

85

 $Nurul\ Azmi: Pengaruh\ Penambahan\ Co-Doping\ Mg/La\ Terhadap\ Karakteristik\ TiO_2\ Sebagai\ Fotoelektroda$